Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 496, Pages 43–60 (Mi znsl7013)  

Linear immanant converters on skew-symmetric matrices of order $4$

A. E. Gutermanab, M. A. Duffnerc, I. A. Spiridonovbde

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Universidade de Lisboa
d National Research University "Higher School of Economics", Moscow
e Moscow Center for Continuous Mathematical Education
References:
Abstract: Let $Q_n$ denote the space of all $n\times n$ skew-symmetric matrices over the complex field $\mathbb{C}$. It is proved that for $n = 4$, there are no linear maps $ T :Q_4\to Q_4$ satisfying the condition $ d_{\chi'} ( T (A) ) =d_{\chi} (A) $ for all matrices $ A\in Q_4$, where $\chi, \chi' \in \{1, \epsilon, [2,2]\}$ are two distinct irreducible characters of $S_4$. In the case $\chi=\chi'=1$, a complete characterization of the linear maps $T :Q_4\to Q_4$ preserving the permanent is obtained. This case is the only one corresponding to equal characters and remaining uninvestigated so far.
Key words and phrases: immanants, skew-symmetric matrices, linear maps.
Received: 12.10.2020
Document Type: Article
UDC: 512.643
Language: Russian
Citation: A. E. Guterman, M. A. Duffner, I. A. Spiridonov, “Linear immanant converters on skew-symmetric matrices of order $4$”, Computational methods and algorithms. Part XXXIII, Zap. Nauchn. Sem. POMI, 496, POMI, St. Petersburg, 2020, 43–60
Citation in format AMSBIB
\Bibitem{GutDufSpi20}
\by A.~E.~Guterman, M.~A.~Duffner, I.~A.~Spiridonov
\paper Linear immanant converters on skew-symmetric matrices of order~$4$
\inbook Computational methods and algorithms. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 496
\pages 43--60
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7013}
Linking options:
  • https://www.mathnet.ru/eng/znsl7013
  • https://www.mathnet.ru/eng/znsl/v496/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :33
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024