Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 495, Pages 291–304 (Mi znsl7010)  

This article is cited in 1 scientific paper (total in 1 paper)

On a sufficient condition for a diffusion process will nether reach boundaries of some interval

B. P. Harlamov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
Full-text PDF (166 kB) Citations (1)
References:
Abstract: A one-dimensional diffusion semi-Markov process on some interval of its values is considered. Semi-Markov transition functions of the process dstisfy a second order differential equation with coefficients admitting possibility what the process stops inside this interval. In terms of coefficients of this equation some sufficient conditions are proved for the process will nether reach the left or right boundaries of this interval.
Key words and phrases: semi-Markov transition functions, functional equation, differential equation, infinite production, divergent series.
Received: 17.09.2020
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. P. Harlamov, “On a sufficient condition for a diffusion process will nether reach boundaries of some interval”, Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, POMI, St. Petersburg, 2020, 291–304
Citation in format AMSBIB
\Bibitem{Har20}
\by B.~P.~Harlamov
\paper On a sufficient condition for a diffusion process will nether reach boundaries of some interval
\inbook Probability and statistics. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 495
\pages 291--304
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7010}
Linking options:
  • https://www.mathnet.ru/eng/znsl7010
  • https://www.mathnet.ru/eng/znsl/v495/p291
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :36
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024