Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 495, Pages 37–63 (Mi znsl6997)  

Chemotaxis stochastic model for two populations

Ya. I. Belopolskaya, E. I. Nemchenko

St. Petersburg State University of Architecture and Civil Engineering
References:
Abstract: We construct a probabilistic representation of the Cauchy problem weak solution for a system of parabolic equations describing a chemotaxis process in a system of two interacting populations. We derive a stochastic system describing the Keller–Segel type chemotaxis process and the Lotka–Voltera type interatction between two populations and prove existence and uniqueness theorem for its solution. Finally, we show connections between solutions of the stochastic system and the Cauchy problem weak solution of the original PDE system.
Key words and phrases: stochastic differential equations, chemotaxis, systems of nonlinear parabolic equations, weak and mild solutions of the Cauchy problem.
Received: 09.10.2020
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Ya. I. Belopolskaya, E. I. Nemchenko, “Chemotaxis stochastic model for two populations”, Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, POMI, St. Petersburg, 2020, 37–63
Citation in format AMSBIB
\Bibitem{BelNem20}
\by Ya.~I.~Belopolskaya, E.~I.~Nemchenko
\paper Chemotaxis stochastic model for two populations
\inbook Probability and statistics. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 495
\pages 37--63
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6997}
Linking options:
  • https://www.mathnet.ru/eng/znsl6997
  • https://www.mathnet.ru/eng/znsl/v495/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :59
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024