Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 495, Pages 9–36 (Mi znsl6996)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic normality in a discrete analog of the parking problem

S. M. Ananjevskiia, N. A. Kryukovb

a Saint Petersburg State University
b University of Lausanne
Full-text PDF (262 kB) Citations (1)
References:
Abstract: In this article, the authors study the behavior of the central moments of higher orders in a discrete version of the “parking problem”. For these moments, asymptotic behavior is obtained when the length of the filled segment increases indefinitely. This made it possible to prove the asymptotic normality of the total length of the allocated intervals of length $ l $ on an interval of length $ n $ for any fixed $ l \ge 2 $, when $ n $ increases unboundedly.
Key words and phrases: random filling, discrete parking problem, asymptotic behavior, asymptotic normality.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00393
Received: 29.10.2020
Document Type: Article
UDC: 519.2
Language: Russian
Citation: S. M. Ananjevskii, N. A. Kryukov, “Asymptotic normality in a discrete analog of the parking problem”, Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, POMI, St. Petersburg, 2020, 9–36
Citation in format AMSBIB
\Bibitem{AnaKry20}
\by S.~M.~Ananjevskii, N.~A.~Kryukov
\paper Asymptotic normality in a discrete analog of the parking problem
\inbook Probability and statistics. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 495
\pages 9--36
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6996}
Linking options:
  • https://www.mathnet.ru/eng/znsl6996
  • https://www.mathnet.ru/eng/znsl/v495/p9
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :45
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024