Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 498, Pages 75–104 (Mi znsl6994)  

II

Projected and near-projected embeddings

P. M. Akhmetievab, S. A. Melikhovc

a IZMIRAN, Troitsk, Russia
b HSE Tikhonov Institute of Electronics and Mathematics, Moscow, Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: A stable smooth map $f N\to M$ is called $k$-realizable if its composition with the inclusion $M\subset M\times\mathbb{R}^k$ is $C^0$-approximable by smooth embeddings; and a $k$-prem if the same composition is $C^\infty$-approximable by smooth embeddings, or, equivalently, if $f$ lifts vertically to a smooth embedding $N\hookrightarrow M\times\mathbb{R}^k$.
It is obvious that if $f$ is a $k$-prem, then it is $k$-realizable. We refute the so-called “prem conjecture” that the converse holds. Namely, for each $n=4k+3\ge 15$ there exists a stable smooth immersion $S^n\looparrowright\mathbb{R}^{2n-7}$ that is $3$-realizable but is not a $3$-prem.
We also prove the converse in a wide range of cases. A $k$-realizable stable smooth fold map $N^n\to M^{2n-q}$ is a $k$-prem if $q\le n$ and $q\le 2k-3$; or if $q<n/2$ and $k=1$; or if $q\in\{2k-1, 2k-2\}$ and $k\in\{2,4,8\}$ and $n$ is sufficiently large.
Key words and phrases: $k$-prem, $k$-realizable map, stable smooth maps, stable PL maps, stable $\mathbb{Z}/2$-equivariant maps, comanifolds (mock bundles).
Received: 16.10.2020
Document Type: Article
UDC: 515.164.6, 515.164.15
Language: English
Citation: P. M. Akhmetiev, S. A. Melikhov, “Projected and near-projected embeddings”, Zap. Nauchn. Sem. POMI, 498, 2020, 75–104
Citation in format AMSBIB
\Bibitem{AkhMel20}
\by P.~M.~Akhmetiev, S.~A.~Melikhov
\paper Projected and near-projected embeddings
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 498
\pages 75--104
\mathnet{http://mi.mathnet.ru/znsl6994}
Linking options:
  • https://www.mathnet.ru/eng/znsl6994
  • https://www.mathnet.ru/eng/znsl/v498/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024