Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 491, Pages 43–51 (Mi znsl6992)  

Singular integral operators on Zygmund spaces on domains

A. V. Vasin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Given a bounded Lipschitz domain $D\subset \mathbb{R}^d$ and a Calderón–Zygmund operator $T$, we study the relationship between smoothness properties of $\partial D$ and the boundedness of $T$ on the Zydmund space $\mathcal{C}_{\omega}(D)$ defined for a general growth function $\omega$. We prove a T(P)-theorem for the Zygmund spaces, checking the boundedness of $T$ on a finite collection of polynomials restricted to the domain. Also, we obtain a new form of an extra cancellation property for the even Calderón–Zygmund operators in polynomial domains.
Key words and phrases: Calderón–Zygmund operators with even kernel, Zygmund classes, T(P) theorem.
Funding agency Grant number
Russian Science Foundation 18-11-00053
Received: 21.09.2020
Document Type: Article
UDC: 517.518.13, 517.982.13
Language: Russian
Citation: A. V. Vasin, “Singular integral operators on Zygmund spaces on domains”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 43–51
Citation in format AMSBIB
\Bibitem{Vas20}
\by A.~V.~Vasin
\paper Singular integral operators on Zygmund spaces on
domains
\inbook Investigations on linear operators and function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 491
\pages 43--51
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6992}
Linking options:
  • https://www.mathnet.ru/eng/znsl6992
  • https://www.mathnet.ru/eng/znsl/v491/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :33
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024