Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 494, Pages 228–241 (Mi znsl6988)  

Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function

V. Yu. Novokshenov

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
References:
Abstract: Distributiond of zeros of polynomials constitute a classic analytic problem. In the paper, a distribution of zeroes to generalized Hermite polynomials $H_{m,n}(z)$ is approximated as $m$, $n\to\infty$, $m/n=O(1)$. These polyno-\break mials defined as Wronskians of classic Hermite polynomials appear in a number of mathematical physics problems as well as in the theory of random matrices. The calcualation is based on scaling reduction of Painlevé IV equation which has solutions $u(z)= -2z +\partial_z \ln H_{m,n+1}(z)/H_{m+1,n}(z)$. For large $m, n$ the logarithmic derivative of $H_{m,n}$ satisfies equation for elliptic Weierstrass function with slowly varying coefficients. In this scaling limit the zeros coincide with poles of such modulated Weierstrass function, and a stability in linear limit gives estimates for the set od zeros.This construction is relatively simple and avoids bulky calculations by isomonodromic deformation method.
Key words and phrases: generalized Hermite polynomials, Painlevé IV equation, meromorphic solutions, distribution of zeroes, Weierstrass function, Lioville-Steklov method, stability in linear limit.
Received: 22.09.2020
Document Type: Article
Language: Russian
Citation: V. Yu. Novokshenov, “Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function”, Questions of quantum field theory and statistical physics. Part 27, Zap. Nauchn. Sem. POMI, 494, POMI, St. Petersburg, 2020, 228–241
Citation in format AMSBIB
\Bibitem{Nov20}
\by V.~Yu.~Novokshenov
\paper Approximation for the zeros of generalized Hermite polynomials via modulated elliptic function
\inbook Questions of quantum field theory and statistical physics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 494
\pages 228--241
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6988}
Linking options:
  • https://www.mathnet.ru/eng/znsl6988
  • https://www.mathnet.ru/eng/znsl/v494/p228
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :34
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024