Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 494, Pages 219–227 (Mi znsl6987)  

Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$

A.A. Nazarov, V. L. Chizhikova

Department of Physics, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Russia
References:
Abstract: Character measure is a probability measure on irreducible representations of a semisimple Lie algebra. It appears from the decomposition into irreducibles of tensor power of a fundamental representation. In this paper we calculate the asymptotics of character measure on representations of $\mathfrak{so}_{2n+1}$ in the regime near the boundary of weight diagram. We find out that it converges to a Poisson-type distribution.
Key words and phrases: character measure, Lie algebras, Lie groups, irreducible representations, Poisson distribution, tensor power decomposition.
Received: 02.10.2020
Document Type: Article
Language: English
Citation: A.A. Nazarov, V. L. Chizhikova, “Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$”, Questions of quantum field theory and statistical physics. Part 27, Zap. Nauchn. Sem. POMI, 494, POMI, St. Petersburg, 2020, 219–227
Citation in format AMSBIB
\Bibitem{NazChi20}
\by A.A.~Nazarov, V.~L.~Chizhikova
\paper Probability measure near the boundary of tensor power decomposition for $\mathfrak{so}_{2n+1}$
\inbook Questions of quantum field theory and statistical physics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 494
\pages 219--227
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6987}
Linking options:
  • https://www.mathnet.ru/eng/znsl6987
  • https://www.mathnet.ru/eng/znsl/v494/p219
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :28
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024