Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 494, Pages 5–22 (Mi znsl6982)  

This article is cited in 1 scientific paper (total in 1 paper)

Backlund transformation for the nonlinear Schrodinger equation

N. M. Belousov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (215 kB) Citations (1)
References:
Abstract: In the note we give a new method of derivation of the Backlund transformation for the nonlinear Schrodinger equation. We discuss conserved quantities related to this transformation, and how it can be connected with the inverse scattering method. Besides, we construct a quantum analog of the Backlund transformation defined by the Baxter's $Q$-operator.
Key words and phrases: nonlinear Schrodinger equation, Backlund transformation, symmetries, integrability, inverse scattering method, Baxter Q-operatorlinear operator defines.
Funding agency Grant number
Russian Science Foundation 19-11-00131
Received: 12.10.2020
Document Type: Article
Language: Russian
Citation: N. M. Belousov, “Backlund transformation for the nonlinear Schrodinger equation”, Questions of quantum field theory and statistical physics. Part 27, Zap. Nauchn. Sem. POMI, 494, POMI, St. Petersburg, 2020, 5–22
Citation in format AMSBIB
\Bibitem{Bel20}
\by N.~M.~Belousov
\paper Backlund transformation for the nonlinear Schrodinger equation
\inbook Questions of quantum field theory and statistical physics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 494
\pages 5--22
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6982}
Linking options:
  • https://www.mathnet.ru/eng/znsl6982
  • https://www.mathnet.ru/eng/znsl/v494/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :194
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024