Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 493, Pages 169–185 (Mi znsl6978)  

This article is cited in 3 scientific papers (total in 3 papers)

Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach

E. A. Zlobinaab

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (247 kB) Citations (3)
References:
Abstract: We consider the short-wavelength diffraction by a contour with non-smooth curvature, whose $j$-th derivative ($j=1, 2, \ldots$) has a discontinuity at a point. Asymptotic formulas describing the effect of non-smoothness of curvature on the wavefield are constructed in a framework of rigorous boundary layer method. Аn expression for cylindrical diffracted wave is derived. The wavefield in the vicinity of the limit ray at small distances from the contour is described in terms of the parabolic cylinder functions.
Key words and phrases: high-frequency diffraction, non-smooth obstacles, boundary layer method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
Received: 30.10.2020
Document Type: Article
UDC: 517.9, 534.26, 537.874.6
Language: Russian
Citation: E. A. Zlobina, “Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach”, Mathematical problems in the theory of wave propagation. Part 50, Zap. Nauchn. Sem. POMI, 493, POMI, St. Petersburg, 2020, 169–185
Citation in format AMSBIB
\Bibitem{Zlo20}
\by E.~A.~Zlobina
\paper Short-wavelength diffraction by a contours with non-smooth curvature. Boundary layer approach
\inbook Mathematical problems in the theory of wave propagation. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 493
\pages 169--185
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6978}
Linking options:
  • https://www.mathnet.ru/eng/znsl6978
  • https://www.mathnet.ru/eng/znsl/v493/p169
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :47
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024