Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 493, Pages 232–258 (Mi znsl6969)  

This article is cited in 1 scientific paper (total in 1 paper)

Eigenfunctions of negative spectrum for the Schrödinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition

M. A. Lyalinov

Saint Petersburg State University
Full-text PDF (307 kB) Citations (1)
References:
Abstract: In this work eigenfunctions of essential and discrete spectrum are constructed. Integral representations and asymptotics of the eigenfunctions at far distances are obtained.
Key words and phrases: discrete and essential spectrum, eigenfunctions, Kontorovich–Lebedev integrals, Sommerfeld–Malyuzhinets technique, asymptotics, functional difference equations.
Funding agency Grant number
Russian Science Foundation 17-11-01126
Received: 28.10.2020
Document Type: Article
UDC: 517
Language: Russian
Citation: M. A. Lyalinov, “Eigenfunctions of negative spectrum for the Schrödinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition”, Mathematical problems in the theory of wave propagation. Part 50, Zap. Nauchn. Sem. POMI, 493, POMI, St. Petersburg, 2020, 232–258
Citation in format AMSBIB
\Bibitem{Lya20}
\by M.~A.~Lyalinov
\paper Eigenfunctions of negative spectrum for the Schr\"odinger operator in a halfplane having singular potential on a ray and with Neumann boundary condition
\inbook Mathematical problems in the theory of wave propagation. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 493
\pages 232--258
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6969}
Linking options:
  • https://www.mathnet.ru/eng/znsl6969
  • https://www.mathnet.ru/eng/znsl/v493/p232
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :45
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024