Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 493, Pages 218–231 (Mi znsl6968)  

About heat wave in a semi-infinite rod with a boundary condition periodically changing in time

V. D. Lukyanov

Avangard
References:
Abstract: It has been obtained and investigated an exact analytical solution of the problem of a periodic heat wave in a semi-infinite rod with a time-varying boundary condition at its end. Тhe end of the rod is maintained at a given temperature (inhomogeneous Dirichlet condition) during the first half of the time period, the end of the rod is heat insulated (homogeneous Neumann condition) in the second half of the time period. The problem is solved by the Wiener-Hopf method. Numerical calculations of temperature distribution are given for temperature wave.
Key words and phrases: thermal conductivity equation, semi-infinite rod, boundary conditions, time variables, Wiener-Hopf method.
Received: 29.10.2020
Document Type: Article
UDC: 517.927.2, 536.24
Language: Russian
Citation: V. D. Lukyanov, “About heat wave in a semi-infinite rod with a boundary condition periodically changing in time”, Mathematical problems in the theory of wave propagation. Part 50, Zap. Nauchn. Sem. POMI, 493, POMI, St. Petersburg, 2020, 218–231
Citation in format AMSBIB
\Bibitem{Luk20}
\by V.~D.~Lukyanov
\paper About heat wave in a semi-infinite rod with a boundary condition periodically changing in time
\inbook Mathematical problems in the theory of wave propagation. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 493
\pages 218--231
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6968}
Linking options:
  • https://www.mathnet.ru/eng/znsl6968
  • https://www.mathnet.ru/eng/znsl/v493/p218
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :112
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024