Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 493, Pages 138–153 (Mi znsl6965)  

This article is cited in 1 scientific paper (total in 1 paper)

Properties of the affine Poincaré wavelet transform

E. A. Gorodnitskiy

Saint Petersburg State University
Full-text PDF (242 kB) Citations (1)
References:
Abstract: The affine Poincaré wavelet transform is the convolution of the analyzed function and the parameter-dependent function called a wavelet. The wavelet is constructed from a function called the mother wavelet by using Lorentz transformations, shift and scaling and depending on the parameters, characterizing these transformations. We provide uniform by parameters estimates for the affine Poincaré wavelet transforms in some classes of analyzed functions and mother wavelets. Among other things, an estimate of the transform for large shifts and an estimate for large rapidities is proved. Both estimates allow one to check vanishment of the transform at small scales.
We provide an asymptotic calculation of the Poincare affine wavelet transform of the model functions.
Key words and phrases: wave equation, integral representation, affine Poincaré group, wavelet analysis.
Received: 10.11.2020
Document Type: Article
UDC: 517
Language: Russian
Citation: E. A. Gorodnitskiy, “Properties of the affine Poincaré wavelet transform”, Mathematical problems in the theory of wave propagation. Part 50, Zap. Nauchn. Sem. POMI, 493, POMI, St. Petersburg, 2020, 138–153
Citation in format AMSBIB
\Bibitem{Gor20}
\by E.~A.~Gorodnitskiy
\paper Properties of the affine Poincar\'e wavelet transform
\inbook Mathematical problems in the theory of wave propagation. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 493
\pages 138--153
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6965}
Linking options:
  • https://www.mathnet.ru/eng/znsl6965
  • https://www.mathnet.ru/eng/znsl/v493/p138
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :62
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024