Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 492, Pages 94–124 (Mi znsl6948)  

On sequences of word maps of compact topological groups

N. L. Gordeev

Herzen State Pedagogical University of Russia, St. Petersburg
References:
Abstract: In the paper of A. Thom (A. Thom, Convergent sequences in discrete groups, Canad. Math. Bull. 56 (2013), 424–433) it has been proved that for any standard unitary group $\mathrm{SU}(\mathbb{C})$ (the compact form) and for any real number $\epsilon > 0$ there is a non-trivial word $w(x, y)$ on two variables such that the image of the word map $\tilde{w}: \mathrm{SU}_n(\mathbb{C})^2\rightarrow \mathrm{SU}_n (\mathbb{C})$ is contained in $\epsilon$-neighbourhood of the identity of the group $\mathrm{SU}_n(\mathbb{C})$. Actually, in Thom's paper there is a construction of a sequence $\{w_j\}_{j \in \mathbb{N}}$, where $w_j \in F_2$, that converges uniformly on a compact group to the identity. In this paper we propose a method for the construction of such sequences. Also, using the result of T. Bandman, G-M. Greuel, F. Grunewald, B. Kunyavskii, G. Pfister and E. Plotkin, Identities for finite solvable groups and equations in finite simple groups. – Compositio Math. 142 (2006) 734-764), we construct the sequence of the surjective word maps $\tilde{w}_j: \mathrm{SU}_2(\mathbb{C})^n\rightarrow \mathrm{SU}_2(\mathbb{C})$, where each word $w_j$ is contained in the corresponding member $F_n^j$ of the derived series of the free group $F_n$. We also make some comments and remarks which are relevant to such results and to general properties of word maps of compact groups.
Key words and phrases: word maps, compact topological groups.
Received: 15.06.2020
Document Type: Article
UDC: 12.54, 512.74, 512.81
Language: Russian
Citation: N. L. Gordeev, “On sequences of word maps of compact topological groups”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 492, POMI, St. Petersburg, 2020, 94–124
Citation in format AMSBIB
\Bibitem{Gor20}
\by N.~L.~Gordeev
\paper On sequences of word maps of compact topological groups
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 492
\pages 94--124
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6948}
Linking options:
  • https://www.mathnet.ru/eng/znsl6948
  • https://www.mathnet.ru/eng/znsl/v492/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :49
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024