Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 491, Pages 52–65 (Mi znsl6944)  

This article is cited in 1 scientific paper (total in 1 paper)

On the rate of decay of a Meyer scaling function

O. L. Vinogradov

St. Petersburg State University, Mathematics and Mechanics Faculty
Full-text PDF (212 kB) Citations (1)
References:
Abstract: A function with the following properties is called a Meyer scaling function: $\varphi\colon\Bbb R\to\Bbb R$, its integral shifts $\varphi(\cdot+n)$, $n\in\Bbb Z$, are orthonormal in $L_2(\Bbb R)$, and its Fourier transform $\widehat{\varphi}(y)=\frac{1}{\sqrt{2\pi}}\int\limits_{\Bbb R}\varphi(t)e^{-iyt} dt$ has the following properties: $\widehat{\varphi}$ is even, $\widehat{\varphi}=0$ outside $[-\pi-\varepsilon,\pi+\varepsilon]$, $\widehat{\varphi}=\frac{1}{\sqrt{2\pi}}$ on $[-\pi+\varepsilon,\pi-\varepsilon]$, where $\varepsilon\in\bigl(0,\frac{\pi}{3}\bigr]$. Here is the main result of the paper. Assume that
$$ \omega\colon[ 0,+\infty)\to [ 0,+\infty) $$
and the function $\frac{\omega(x)}{x}$ decreases. Then the following assertions are equivalent. 1. For every (or, equivalently, for some) $\varepsilon\in(0,\frac{\pi}{3}]$ there exists $x_0>0$ and a Meyer scaling function $\varphi$ such that $\widehat{\varphi}=0$ outside $[-\pi-\varepsilon,\pi+\varepsilon]$ and $|\varphi(x)|\leqslant e^{-\omega(|x|)}$ for all $|x|>x_0$. 2. $\int\limits_1^{+\infty}\frac{\omega(x)}{x^2} dx<+\infty$.
Key words and phrases: Meyer scaling function, Fourier transform.
Funding agency Grant number
Russian Science Foundation 18-11-00055
Received: 28.07.2020
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “On the rate of decay of a Meyer scaling function”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 52–65
Citation in format AMSBIB
\Bibitem{Vin20}
\by O.~L.~Vinogradov
\paper On the rate of decay of a Meyer scaling function
\inbook Investigations on linear operators and function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 491
\pages 52--65
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6944}
Linking options:
  • https://www.mathnet.ru/eng/znsl6944
  • https://www.mathnet.ru/eng/znsl/v491/p52
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :40
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024