Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 491, Pages 66–93 (Mi znsl6939)  

This article is cited in 1 scientific paper (total in 1 paper)

Exact estimates of approximation by abstract Kantorovich type operators in terms of the second modulus of continuity

L. N. Ikhsanov

Saint Petersburg State University
Full-text PDF (246 kB) Citations (1)
References:
Abstract: Approximation of bounded measurable functions on the segment $[0, 1]$ by Kantorovich type operators
$$ B_n(f)(x)=\sum_{j=0}^nC_n^jx^j(1-x)^{n-j}F_{j}(f), $$
where $F_{j}$ are functionals possessing sufficiently small supports and having some symmetry is considered. The error of approximation is estimated in terms of the second modulus of continuity. The result is sharp.
Key words and phrases: Kantorovich type operator, second modulus of continuity.
Funding agency Grant number
Russian Science Foundation 18-11-00055
Received: 04.08.2020
Document Type: Article
UDC: 517.5
Language: Russian
Citation: L. N. Ikhsanov, “Exact estimates of approximation by abstract Kantorovich type operators in terms of the second modulus of continuity”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 66–93
Citation in format AMSBIB
\Bibitem{Ikh20}
\by L.~N.~Ikhsanov
\paper Exact estimates of approximation by abstract Kantorovich type operators in terms of the second modulus of continuity
\inbook Investigations on linear operators and function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 491
\pages 66--93
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6939}
Linking options:
  • https://www.mathnet.ru/eng/znsl6939
  • https://www.mathnet.ru/eng/znsl/v491/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :29
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024