Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 491, Pages 5–26 (Mi znsl6937)  

Estimates for the constant in a Jackson type inequality for periodic functions

M. V. Babushkin

St. Petersburg National Research University of Information Technologies, Mechanics and Optics
References:
Abstract: New estimates are established for the constant $J$ in the Jackson type inequality
\begin{align*} &E_{n}(f) \leq \frac{J(m, r, \tau)}{n^{r}}\omega_{m}(f^{(r)}, \tau/n). \end{align*}
They improve previously known estimates in the case where $m \to +\infty$, $r \in \mathbb{N}$, $\tau \geq \pi$. Here $f$ is a $2\pi$-periodic continuous function, $E_{n}$ is the best approximation by trigonometric polynomials of order less than $n$, $\omega_{m}$ is the modulus of continuity of order $m$.
Key words and phrases: Jackson inequalities, direct theorems of approximation theory, Steklov functions, best approximation, modulus of continuity.
Received: 27.07.2020
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. V. Babushkin, “Estimates for the constant in a Jackson type inequality for periodic functions”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 5–26
Citation in format AMSBIB
\Bibitem{Bab20}
\by M.~V.~Babushkin
\paper Estimates for the constant in a Jackson type inequality for periodic functions
\inbook Investigations on linear operators and function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 491
\pages 5--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6937}
Linking options:
  • https://www.mathnet.ru/eng/znsl6937
  • https://www.mathnet.ru/eng/znsl/v491/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :31
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024