Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 252, Pages 67–77 (Mi znsl693)  

On transversals of the family of translates of two-dimensional convex compact

R. N. Karasev

Moscow Institute of Physics and Technology
Abstract: The following theorem gives an affirmative answer to Grünbaum's old equistion. Let $\mathscr K$ be the family of translates of a convex compact set $K\subset\mathbb R^2$. If every two elements of $\mathscr K$ have a common point, then there exist three points $A,B,C\in\mathbb R^2$ such that every element of $\mathscr K$ contains some of these points.
Received: 20.06.1998
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 104, Issue 4, Pages 1293–1300
DOI: https://doi.org/10.1023/A:1011381830953
Bibliographic databases:
UDC: 514.518
Language: Russian
Citation: R. N. Karasev, “On transversals of the family of translates of two-dimensional convex compact”, Geometry and topology. Part 3, Zap. Nauchn. Sem. POMI, 252, POMI, St. Petersburg, 1998, 67–77; J. Math. Sci. (New York), 104:4 (2001), 1293–1300
Citation in format AMSBIB
\Bibitem{Kar98}
\by R.~N.~Karasev
\paper On transversals of the family of translates of two-dimensional convex compact
\inbook Geometry and topology. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 252
\pages 67--77
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756717}
\zmath{https://zbmath.org/?q=an:0992.52003}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 104
\issue 4
\pages 1293--1300
\crossref{https://doi.org/10.1023/A:1011381830953}
Linking options:
  • https://www.mathnet.ru/eng/znsl693
  • https://www.mathnet.ru/eng/znsl/v252/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024