|
Zapiski Nauchnykh Seminarov POMI, 2020, Volume 489, Pages 96–112
(Mi znsl6926)
|
|
|
|
Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
V. A. Solonnikov С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия
Abstract:
We prove local in time solvability of the free boundary problem for two phase viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$ with $p>2$, $l\in(1/p,2/p)$.
Key words and phrases:
$L_p$-estimates, free boundary problems, local solvability.
Received: 12.12.2019
Citation:
V. A. Solonnikov, “Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Zap. Nauchn. Sem. POMI, 489, POMI, St. Petersburg, 2020, 96–112
Linking options:
https://www.mathnet.ru/eng/znsl6926 https://www.mathnet.ru/eng/znsl/v489/p96
|
Statistics & downloads: |
Abstract page: | 100 | Full-text PDF : | 40 | References: | 22 |
|