Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 489, Pages 96–112 (Mi znsl6926)  

Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$

V. A. Solonnikov

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия
References:
Abstract: We prove local in time solvability of the free boundary problem for two phase viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$ with $p>2$, $l\in(1/p,2/p)$.
Key words and phrases: $L_p$-estimates, free boundary problems, local solvability.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00397
The research was partially supported by RFBR grant No. 20-01-00397.
Received: 12.12.2019
Document Type: Article
UDC: 517
Language: English
Citation: V. A. Solonnikov, “Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 48, Zap. Nauchn. Sem. POMI, 489, POMI, St. Petersburg, 2020, 96–112
Citation in format AMSBIB
\Bibitem{Sol20}
\by V.~A.~Solonnikov
\paper Local solvability of free boundary problem for viscous compressible and incompressible fluids in the spaces $W_p^{2+l,1+l/2}(Q_T)$, $p>2$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 489
\pages 96--112
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6926}
Linking options:
  • https://www.mathnet.ru/eng/znsl6926
  • https://www.mathnet.ru/eng/znsl/v489/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :40
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024