Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 252, Pages 62–66 (Mi znsl692)  

On the topological structure of complex projective complete intersections with quadratic singularities

O. A. Ivanov, N. Yu. Netsvetaev

Saint-Petersburg State University
Abstract: $n$-Dimensional complete intersections of “sufficiently high multidegree” in $\mathbb C P^{n+k}$, $n\ge3$, with fixed number and, possibly, position of singular points are studied. In the case where all singularities are quadratic, we give a topological description of such a variety in terms of a connected sum decomposition of special type. In this case, the diffeomorphism type of the variety is determined by the dimension, multidegree, and the number of singular points.
Received: 15.04.1998
English version:
Journal of Mathematical Sciences (New York), 2001, Volume 104, Issue 4, Pages 1289–1292
DOI: https://doi.org/10.1023/A:1011329814115
Bibliographic databases:
UDC: 515.164
Language: Russian
Citation: O. A. Ivanov, N. Yu. Netsvetaev, “On the topological structure of complex projective complete intersections with quadratic singularities”, Geometry and topology. Part 3, Zap. Nauchn. Sem. POMI, 252, POMI, St. Petersburg, 1998, 62–66; J. Math. Sci. (New York), 104:4 (2001), 1289–1292
Citation in format AMSBIB
\Bibitem{IvaNet98}
\by O.~A.~Ivanov, N.~Yu.~Netsvetaev
\paper On the topological structure of complex projective complete intersections with quadratic singularities
\inbook Geometry and topology. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 252
\pages 62--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756716}
\zmath{https://zbmath.org/?q=an:1064.14055}
\transl
\jour J. Math. Sci. (New York)
\yr 2001
\vol 104
\issue 4
\pages 1289--1292
\crossref{https://doi.org/10.1023/A:1011329814115}
Linking options:
  • https://www.mathnet.ru/eng/znsl692
  • https://www.mathnet.ru/eng/znsl/v252/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024