Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 488, Pages 168–176 (Mi znsl6910)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Erdős–Hajnal problem in the case of $3$-graphs

D. D. Cherkashinabc

a Chebyshev Laboratory, St. Petersburg State University
b Moscow Institute of Physics and Technology, Moscow region, 141700, Russia
c National Research University Higher School of Economics, St. Petersburg, Russia
Full-text PDF (153 kB) Citations (2)
References:
Abstract: Let $m(n,r)$ denote the minimal number of edges in an $n$-uniform hypergraph which is not $r$-colorable. For the broad history of the problem see [10]. It is known [4] that for a fixed $n$ the sequence
$$ \frac{m(n,r)}{r^n} $$
has a limit. The only trivial case is $n=2$ in which $m(2,r) = \binom{r+1}{2}$. In this note we focus on the case $n=3$. First, we compare the existing methods in this case and then improve the lower bound.
Key words and phrases: extremal combinatorics, hypergraph colorings.
Funding agency Grant number
Russian Science Foundation 16-11-10014
The work was supported by the Russian Scientific Foundation grant 16-11-10014.
Received: 14.11.2019
Document Type: Article
UDC: 519.176
Language: English
Citation: D. D. Cherkashin, “On the Erdős–Hajnal problem in the case of $3$-graphs”, Combinatorics and graph theory. Part XI, Zap. Nauchn. Sem. POMI, 488, POMI, St. Petersburg, 2019, 168–176
Citation in format AMSBIB
\Bibitem{Che19}
\by D.~D.~Cherkashin
\paper On the Erd{\H o}s--Hajnal problem in the case of $3$-graphs
\inbook Combinatorics and graph theory. Part~XI
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 488
\pages 168--176
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6910}
Linking options:
  • https://www.mathnet.ru/eng/znsl6910
  • https://www.mathnet.ru/eng/znsl/v488/p168
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :25
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024