Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 487, Pages 78–99 (Mi znsl6903)  

Quantum Hamiltonian eigenstates for a free transverse field

T. A. Bolokhov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We demonstrate that quantum Hamiltonian operator for a free transverse field within the framework of the second quantization reveals an alternative set of states satisfying the eigenstate functional equations. The construction is based upon extensions of the quadratic form of the transverse Laplace operator which are used as a source of spherical basis functions with singularity at the origin. This basis then naturally takes place of the one of plane or spherical waves in the process of Fourrier or spherical variable separation.
Key words and phrases: second quantization method, quantum Hamilton operator, extensions of quadratic forms, Laplace operator, transverse subspace, Yang-Mills field.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00283_а
Received: 26.11.2019
Document Type: Article
UDC: 517.9
Language: Russian
Citation: T. A. Bolokhov, “Quantum Hamiltonian eigenstates for a free transverse field”, Questions of quantum field theory and statistical physics. Part 26, Zap. Nauchn. Sem. POMI, 487, POMI, St. Petersburg, 2019, 78–99
Citation in format AMSBIB
\Bibitem{Bol19}
\by T.~A.~Bolokhov
\paper Quantum Hamiltonian eigenstates for a free transverse field
\inbook Questions of quantum field theory and statistical physics. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 487
\pages 78--99
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6903}
Linking options:
  • https://www.mathnet.ru/eng/znsl6903
  • https://www.mathnet.ru/eng/znsl/v487/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :46
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025