|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 348, Pages 272–302
(Mi znsl69)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
The Neumann problem for semilinear elliptic equation in thin cylinder.
The least energy solutions
A. P. Shcheglova Saint-Petersburg State Electrotechnical University
Abstract:
We prove that the least energy solution of the boundary value problem
$$
\begin{cases}
-\Delta u+u=|u|^{q-2}u&\text{ in }Q
\\
\frac{\partial u}{\partial\mathbf n}=0&\text{ on }\partial Q
\end{cases}
$$
is a constant for all $q\in(2;2^*]$ if $Q\subset\mathbb R^n$ ($n\ge 3$) is a sufficiently thin cylinder.
Received: 10.09.2007
Citation:
A. P. Shcheglova, “The Neumann problem for semilinear elliptic equation in thin cylinder.
The least energy solutions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Zap. Nauchn. Sem. POMI, 348, POMI, St. Petersburg, 2007, 272–302; J. Math. Sci. (N. Y.), 152:5 (2008), 780–798
Linking options:
https://www.mathnet.ru/eng/znsl69 https://www.mathnet.ru/eng/znsl/v348/p272
|
Statistics & downloads: |
Abstract page: | 320 | Full-text PDF : | 101 | References: | 76 |
|