Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 348, Pages 272–302 (Mi znsl69)  

This article is cited in 3 scientific papers (total in 3 papers)

The Neumann problem for semilinear elliptic equation in thin cylinder. The least energy solutions

A. P. Shcheglova

Saint-Petersburg State Electrotechnical University
Full-text PDF (324 kB) Citations (3)
References:
Abstract: We prove that the least energy solution of the boundary value problem
$$ \begin{cases} -\Delta u+u=|u|^{q-2}u&\text{ in }Q \\ \frac{\partial u}{\partial\mathbf n}=0&\text{ on }\partial Q \end{cases} $$
is a constant for all $q\in(2;2^*]$ if $Q\subset\mathbb R^n$ ($n\ge 3$) is a sufficiently thin cylinder.
Received: 10.09.2007
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 5, Pages 780–798
DOI: https://doi.org/10.1007/s10958-008-9089-0
Bibliographic databases:
UDC: 517
Language: Russian
Citation: A. P. Shcheglova, “The Neumann problem for semilinear elliptic equation in thin cylinder. The least energy solutions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Zap. Nauchn. Sem. POMI, 348, POMI, St. Petersburg, 2007, 272–302; J. Math. Sci. (N. Y.), 152:5 (2008), 780–798
Citation in format AMSBIB
\Bibitem{Shc07}
\by A.~P.~Shcheglova
\paper The Neumann problem for semilinear elliptic equation in thin cylinder.
The least energy solutions
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 348
\pages 272--302
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl69}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 152
\issue 5
\pages 780--798
\crossref{https://doi.org/10.1007/s10958-008-9089-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749088775}
Linking options:
  • https://www.mathnet.ru/eng/znsl69
  • https://www.mathnet.ru/eng/znsl/v348/p272
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :101
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024