Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 486, Pages 254–264 (Mi znsl6895)  

This article is cited in 1 scientific paper (total in 1 paper)

On a limit theorem related to a Cauchy problem solution for the Schrödinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$

M. V. Platonovaab, S. V. Tsykinc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
c Saint Petersburg State University
Full-text PDF (184 kB) Citations (1)
References:
Abstract: We prove a limit theorem on convergence of mathematical expectations of functionals of sums of independent random variables to a Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$ in the right hand side.
Key words and phrases: fractional derivative, Schrödinger equation, limit theorems.
Funding agency Grant number
Russian Science Foundation 19-71-30002
Received: 05.11.2019
Document Type: Article
UDC: 519.2
Language: Russian
Citation: M. V. Platonova, S. V. Tsykin, “On a limit theorem related to a Cauchy problem solution for the Schrödinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$”, Probability and statistics. Part 28, Zap. Nauchn. Sem. POMI, 486, POMI, St. Petersburg, 2019, 254–264
Citation in format AMSBIB
\Bibitem{PlaTsy19}
\by M.~V.~Platonova, S.~V.~Tsykin
\paper On a limit theorem related to a Cauchy problem solution for the Schr\"odinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
\inbook Probability and statistics. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 486
\pages 254--264
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6895}
Linking options:
  • https://www.mathnet.ru/eng/znsl6895
  • https://www.mathnet.ru/eng/znsl/v486/p254
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :41
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024