Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 486, Pages 229–232 (Mi znsl6893)  

On the law of the iterated logarithm for sums of dependent random variables

V. V. Petrov

Saint Petersburg State University
References:
Abstract: Sufficient conditions are found for the applicability of the generalized law of the iterated logarithm for sums of dependent random variables in the case when the sequence of normalizing constants is not necessarily nondecreasing.
Key words and phrases: the law of the iterated logarithtm, sums of random variables.
Received: 19.10.2019
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. V. Petrov, “On the law of the iterated logarithm for sums of dependent random variables”, Probability and statistics. Part 28, Zap. Nauchn. Sem. POMI, 486, POMI, St. Petersburg, 2019, 229–232
Citation in format AMSBIB
\Bibitem{Pet19}
\by V.~V.~Petrov
\paper On the law of the iterated logarithm for sums of dependent random variables
\inbook Probability and statistics. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 486
\pages 229--232
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6893}
Linking options:
  • https://www.mathnet.ru/eng/znsl6893
  • https://www.mathnet.ru/eng/znsl/v486/p229
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :41
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024