Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 486, Pages 200–213 (Mi znsl6891)  

This article is cited in 1 scientific paper (total in 1 paper)

Limit theorems for areas and perimeters of random inscribed and circumscribed polygons

Ya. Yu. Nikitina, T. A. Polevayab

a Saint Petersburg State University
b St. Petersburg State University of Information Technologies, Mechanics and Optics
Full-text PDF (212 kB) Citations (1)
References:
Abstract: We find the limiting distributions for the maximal area of random convex inscribed polygons and for minimal area of random convex circumscribed polygons whose vertices are distributed on the circumference with almost arbitrary continuous density. These distributions belong to the Weibull family. From this we deduce new limit theorems in the case when the vertices of polygons have the uniform distribution on the ellipse. Some similar theorems are formulated also for perimeters of inscribed and circumscribed polygons.
Key words and phrases: $U$-max statistics, Weibull distribution, random perimeter, random area, inscribed polygon.
Received: 10.11.2019
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Ya. Yu. Nikitin, T. A. Polevaya, “Limit theorems for areas and perimeters of random inscribed and circumscribed polygons”, Probability and statistics. Part 28, Zap. Nauchn. Sem. POMI, 486, POMI, St. Petersburg, 2019, 200–213
Citation in format AMSBIB
\Bibitem{NikPol19}
\by Ya.~Yu.~Nikitin, T.~A.~Polevaya
\paper Limit theorems for areas and perimeters of random inscribed and circumscribed polygons
\inbook Probability and statistics. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 486
\pages 200--213
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6891}
Linking options:
  • https://www.mathnet.ru/eng/znsl6891
  • https://www.mathnet.ru/eng/znsl/v486/p200
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :56
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024