Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 485, Pages 58–71 (Mi znsl6878)  

This article is cited in 2 scientific papers (total in 2 papers)

Commutators of relative and unrelative elementary groups, revisited

N. Vavilova, Z. Zhangb

a St. Petersburg State University, St. Petersburg, Russia
b Beijing Institute of Technology, Beijing, China
Full-text PDF (184 kB) Citations (2)
References:
Abstract: Let $R$ be any associative ring with $1$, $n\ge 3$, and let $A,B$ be two-sided ideals of $R$. In the present paper we show that the mixed commutator subgroup $[E(n,R,A),E(n,R,B)]$ is generated as a group by the elements of the two following forms: 1) $z_{ij}(ab,c)$ and $z_{ij}(ba,c)$, 2) $[t_{ij}(a),t_{ji}(b)]$, where $1\le i\neq j\le n$, $a\in A$, $b\in B$, $c\in R$. Moreover, for the second type of generators, it suffices to fix one pair of indices $(i,j)$. This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality $\big[E(n,R,A),E(n,R,B)\big]=\big[E(n,A),E(n,B)\big]$ and many further corollaries can be derived for rings subject to commutativity conditions.
Key words and phrases: general linear groups, elementary subgroups, congruence subgroups, standard commutator formula, unrelativised commutator formula, elementary generators.
Funding agency Grant number
Russian Science Foundation 17-11-01261
The work of the first author was supported by the Russian Science Foundation grant 17-11-01261.
Received: 16.10.2019
Document Type: Article
UDC: 512.5
Language: English
Citation: N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary groups, revisited”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 485, POMI, St. Petersburg, 2019, 58–71
Citation in format AMSBIB
\Bibitem{VavZha19}
\by N.~Vavilov, Z.~Zhang
\paper Commutators of relative and unrelative elementary groups, revisited
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXI
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 485
\pages 58--71
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6878}
Linking options:
  • https://www.mathnet.ru/eng/znsl6878
  • https://www.mathnet.ru/eng/znsl/v485/p58
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :51
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024