Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 485, Pages 140–154 (Mi znsl6873)  

This article is cited in 1 scientific paper (total in 1 paper)

On calculation of an automorphism group of a hyperelliptic curve

M. D. Malykh, L. A. Sevastianov

Peoples' Friendship University of Russia, Moscow
Full-text PDF (271 kB) Citations (1)
References:
Abstract: An algorithm for finding an automorphism group of a hyperelliptic curve $y^2 = p (x) $ with $p \in \mathbb Q [x] $ over field of complex numbers is proposed. The algorithm is based on parametric representation of the curve at singular points by the help of power series. The implementation of the algorithm in the computer algebra system Sage is presented, several examples are given. Numerical experiments have shown that the algorithm does not lead to excessively complex calculations. Used format for description of the found groups allows to apply standard for Sage instruments for the investigation of small-order groups.
Key words and phrases: hyperelliptic curve, group of birational autimorphisms, Sage, SageMath.
Received: 26.09.2019
Document Type: Article
UDC: 512.7, 519.688
Language: Russian
Citation: M. D. Malykh, L. A. Sevastianov, “On calculation of an automorphism group of a hyperelliptic curve”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 485, POMI, St. Petersburg, 2019, 140–154
Citation in format AMSBIB
\Bibitem{MalSev19}
\by M.~D.~Malykh, L.~A.~Sevastianov
\paper On calculation of an automorphism group of a hyperelliptic curve
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXI
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 485
\pages 140--154
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6873}
Linking options:
  • https://www.mathnet.ru/eng/znsl6873
  • https://www.mathnet.ru/eng/znsl/v485/p140
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :32
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024