Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 485, Pages 72–77 (Mi znsl6871)  

A combinatorial formula for monomials in Kontsevich's $\psi$-classes

J. Gordonabc, G. Paninadb

a Chebyshev Laboratory, St. Petersburg State University
b St. Petersburg Department of Steklov Institute of Mathematics
c International Laboratory of Game Theory and Decision Making, National Research University Higher School of Economics
d St. Petersburg State University
References:
Abstract: Diagonal complexes provide a simplicial model for the Kontsevich's tautological bundles over $\mathcal{M}_{g,n}$. Local combinatorial formula for the first Chern class yields a combinatorial formula for the $\psi$-classes (that is, first Chern classes of the tautological bundles). In the present paper we derive a formula for arbitrary monomials in $\psi$-classes.
Key words and phrases: moduli space, ribbon graphs, curve complex, associahedron, Chern class.
Funding agency Grant number
Russian Science Foundation 16-11-10039
This research is supported by the Russian Science Foundation under grant 16-11-10039.
Received: 08.10.2019
Document Type: Article
UDC: 515.164.2
Language: English
Citation: J. Gordon, G. Panina, “A combinatorial formula for monomials in Kontsevich's $\psi$-classes”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 485, POMI, St. Petersburg, 2019, 72–77
Citation in format AMSBIB
\Bibitem{GorPan19}
\by J.~Gordon, G.~Panina
\paper A combinatorial formula for monomials in Kontsevich's $\psi$-classes
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXI
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 485
\pages 72--77
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6871}
Linking options:
  • https://www.mathnet.ru/eng/znsl6871
  • https://www.mathnet.ru/eng/znsl/v485/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :32
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024