Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 165–184 (Mi znsl6866)  

A motivic Segal-type theorem for pairs (announcement)

A. Tsybyshev

Euler International Mathematical Institute, St. Petersburg
References:
Abstract: V. Voevodsky has set the foundation of the machinery of loop spaces of motivic spaces to provide a more computation-friendly construction of the stable motivic category $SH(k)$. G. Garkusha and I. Panin have made that vision a reality, using joint works with A. Ananievsky, A. Neshitov and A. Druzhinin. In particular, G. Garkusha and I. Panin have proved that for any infinite perfect field $k$ and any $k$-smooth scheme $X$ the canonical morphism of motivic spaces $C_*Fr(X)\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X_+)$ is Nisnevich-locally a group-completion.
The present work addresses a generalisation of that theorem to the case of general open pairs of smooth schemes $(X,U),$ where $X$ is a $k$-smooth scheme, $U$ is its open subscheme intersecting each component of $X$ in a nonempty subscheme. We propose that in this case the motivic space $C_*Fr((X,U))$ is Nisnevich-locally connected and the canonical morphism of motivic spaces $C_*Fr((X,U))\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X/U)$ is Nisnevich-locally a homotopy equivalence of simplicial sets. Moreover, we state that if the codimension of $S=X-U$ in each component of $X$ is greater than $r \geq 0,$ then the simplicial sheaf $C_*Fr((X,U))$ is locally $r$-connected.
Some principal steps of the proof of these statements are provided in the present paper, but other important technical lemmas are given without proof. Those proofs will be published later.
Received: 07.11.2019
Document Type: Article
UDC: 512.732
Language: Russian
Citation: A. Tsybyshev, “A motivic Segal-type theorem for pairs (announcement)”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 165–184
Citation in format AMSBIB
\Bibitem{Tsy19}
\by A.~Tsybyshev
\paper A motivic Segal-type theorem for pairs (announcement)
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 165--184
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6866}
Linking options:
  • https://www.mathnet.ru/eng/znsl6866
  • https://www.mathnet.ru/eng/znsl/v484/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :21
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024