Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 138–148 (Mi znsl6863)  

Notes on a Grothendieck–Serre conjecture in mixed characteristic case

I. Panin

St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
References:
Abstract: Let $R$ be a discrete valuation ring with an infinite residue field, $X$ be a smooth projective curve over $R$. Let $\mathbf{G}$ be a simple simply-connected group scheme over $R$ and $E$ be a principal $\mathbf{G}$-bundle over $X$. We prove that $E$ is trivial locally for the Zariski topology on $X$ providing it is trivial over the generic point of $X$. The main aim of the present paper is to develop a method rather than to get a very strong concrete result.
Key words and phrases: simple algebraic group, principal bundle, Grothendieck–Serre conjecture, mixed characteristic rings.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00513
The author acknowledges support of the RFBR grant No. 19-01-00513.
Received: 29.10.2019
Document Type: Article
UDC: 512.732+512.736
Language: English
Citation: I. Panin, “Notes on a Grothendieck–Serre conjecture in mixed characteristic case”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 138–148
Citation in format AMSBIB
\Bibitem{Pan19}
\by I.~Panin
\paper Notes on a Grothendieck--Serre conjecture in mixed characteristic case
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 138--148
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6863}
Linking options:
  • https://www.mathnet.ru/eng/znsl6863
  • https://www.mathnet.ru/eng/znsl/v484/p138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :41
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024