Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 121–137 (Mi znsl6862)  

This article is cited in 1 scientific paper (total in 1 paper)

Subgroups of Chevalley groups over rings

R. Lubkovab, A. Stepanova

a St. Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Full-text PDF (228 kB) Citations (1)
References:
Abstract: In the present paper, we study the subgroup lattice of a Chevalley group $\operatorname{G}(\Phi,R)$ over a commutative ring $R$, containing the subgroup $D(R)$, where $D$ is a subfunctor of $\operatorname{G}(\Phi,\_)$. Assuming that over any field $F$ the normalizer of the group $D(F)$ is “closed to be maximal”, we formulate some technical conditions, which imply that the lattice is standard. We also study the conditions concerning the normalizer of $D(R)$ in the case, where $D(R)$ is the elementary subgroup of another Chevalley group $\operatorname{G}(\Psi,R)$ embedded into $\operatorname{G}(\Phi,R)$.
Key words and phrases: Chevalley group, subgroup lattice, generic element, universal localization, normalizer, transporter.
Funding agency Grant number
Russian Science Foundation 17-11-01261
This work is supported by the Russian Science Foundation, grant №17-11-01261.
Received: 08.11.2019
Document Type: Article
UDC: 512.5
Language: English
Citation: R. Lubkov, A. Stepanov, “Subgroups of Chevalley groups over rings”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 121–137
Citation in format AMSBIB
\Bibitem{LubSte19}
\by R.~Lubkov, A.~Stepanov
\paper Subgroups of Chevalley groups over rings
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 121--137
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6862}
Linking options:
  • https://www.mathnet.ru/eng/znsl6862
  • https://www.mathnet.ru/eng/znsl/v484/p121
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :68
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024