Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 115–120 (Mi znsl6861)  

Embedding an elementary net into a gap of nets

V. A. Koibaevab

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
References:
Abstract: Let $R$ be a commutative unital ring and $n\in\Bbb{N}$, $n\geq 2$. A matrix $ \sigma = (\sigma_{ij})$, $1\leq{i, j} \leq{n}$, of additive subgroups $\sigma_{ij}$ of the ring $R$ is called a net or carpet over the ring $R$ of order $n$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all $i$, $r$, $j$. A net without diagonal is said to be an elementary net or elementary carpet. Suppose that $n\geq 3$. Consider a matrix $\omega = (\omega_{ij})$ of additive subgroups $\omega_{ij}$ of the ring $R$, where $\omega_{ij}$, $i\neq{j}$, is defined by the rule: $ \omega_{ij} = \sum\limits_{k=1}^{n}\sigma_{ik}\sigma_{kj}$, $k\neq i,j$. The set $\omega = (\omega_{ij})$ of elementary subgroups $\omega_{ij}$ of the ring $R$ is an elementary net, which is called elementary derived net. The diagonal of the derived net $\omega$ is defined by the formula $\omega_{ii}=\sum\limits_{k\neq s}\sigma_{ik}\sigma_{ks}\sigma_{si}$, $1\leq i\leq n$, where the sum is taken over all $1 \leq{k\neq{s}}\leq{n} $. The following result is proved. An elementary net $\sigma$ generates the derived net $\omega=(\omega_{ij}) $ and the net $\Omega=(\Omega_{ij})$, which is associated with the elementary group $E(\sigma)$, where $ \omega\subseteq \sigma \subseteq \Omega$, $\omega_{ir}\Omega_{rj} \subseteq \omega_{ij}$, $\Omega_{ir}\omega_{rj} \subseteq \omega_{ij}$ $(1\leq i, r, j\leq n)$. In particular, the matrix ring $ M(\omega)$ is a two-sided ideal of the ring $M(\Omega)$. For nets of order $n=3$ we establish a more precise result.
Key words and phrases: nets, carpets, elementary nets, closed elementary nets, admissible elementary nets, derivative net, elementary net group.
Received: 26.09.2019
Document Type: Article
UDC: 512.5
Language: Russian
Citation: V. A. Koibaev, “Embedding an elementary net into a gap of nets”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 115–120
Citation in format AMSBIB
\Bibitem{Koi19}
\by V.~A.~Koibaev
\paper Embedding an elementary net into a gap of nets
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 115--120
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6861}
Linking options:
  • https://www.mathnet.ru/eng/znsl6861
  • https://www.mathnet.ru/eng/znsl/v484/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :27
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024