|
Zapiski Nauchnykh Seminarov POMI, 1998, Volume 252, Pages 7–12
(Mi znsl686)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On intersections of convex bodies
V. A. Zalgaller St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $K_0,K_1,\dots,K_m$ be nonempty convex bodies in $\mathbb R^n$. Let $r_1,\dots,r_m$ be vectors in $\mathbb R^n$, $\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. Then the set $D=\{\rho\mid\Phi(\rho)K_0\cap\bigcap^m_{i=1}(K_i+r_i)\ne\varnothing\}$ is convex in $\mathbb R^{nm}$, and the family of sets
$\{\Phi(\rho)\mid\rho\in D\}$ is concave. Let $k=\max\limits_\rho\dim\Phi(\rho)\ge1$. Then for the volume
$\operatorname{Vol}_{k}\Phi(\rho)=W_0(\Phi(\rho))$ and for all mean cross-sectional measures
$W_\nu(\Phi(\rho))$,
$\nu=0,1,\dots,k-1$, the function $\sqrt[k-\nu]{W_\nu(\Phi(\rho))}$ is concave on the set $D$.
Received: 02.03.1998
Citation:
V. A. Zalgaller, “On intersections of convex bodies”, Geometry and topology. Part 3, Zap. Nauchn. Sem. POMI, 252, POMI, St. Petersburg, 1998, 7–12; J. Math. Sci. (New York), 104:4 (2001), 1255–1258
Linking options:
https://www.mathnet.ru/eng/znsl686 https://www.mathnet.ru/eng/znsl/v252/p7
|
Statistics & downloads: |
Abstract page: | 195 | Full-text PDF : | 70 |
|