Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 72–85 (Mi znsl6859)  

Mod-$2$ (co)homology of an abelian group

S. O. Ivanova, A. A. Zaikovskiiab

a Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, St. Petersburg, 199178 Russia
b St. Petersburg Department of Steklov Mathematical Institute
References:
Abstract: It is known that for a prime $p\ne 2$ there is the following natural description of the homology algebra of an abelian group $H_*(A,\mathbb F_p)\cong \Lambda(A/p)\otimes \Gamma({}_pA)$ and for finitely generated abelian groups there is the following description of the cohomology algebra of $H^*(A,\mathbb F_p)\cong \Lambda((A/p)^\vee)\otimes \mathsf{Sym}(({}_pA)^\vee).$ We prove that there are no such descriptions for $p=2$ that “depend” only on $A/2$ and ${}_2A$ but we provide natural descriptions of $H_*(A,\mathbb F_2)$ and $H^*(A,\mathbb F_2)$ that “depend” on $A/2,$ ${}_2A$ and a linear map $\widetilde \beta\colon {}_2A\to A/2.$ Moreover, we prove that there is a filtration by subfunctors on $H_n(A,\mathbb F_2)$ whose quotients are $\Lambda^{n-2i}(A/2)\otimes \Gamma^i({}_2A)$ and that for finitely generated abelian groups there is a natural filtration on $H^n(A,\mathbb F_2)$ whose quotients are $ \Lambda^{n-2i}((A/2)^\vee)\otimes \mathsf{Sym}^i(({}_2A)^\vee).$
Key words and phrases: homological algebra, algebraic topology, abelian group homology, Eilenberg–MacLane space, Hopf algebra, divided power algebra.
Funding agency Grant number
Russian Science Foundation 16-11-10073
This work is supported by the Russian Science Foundation under grant 16-11-10073.
Received: 11.09.2019
Document Type: Article
UDC: 515.146.36
Language: English
Citation: S. O. Ivanov, A. A. Zaikovskii, “Mod-$2$ (co)homology of an abelian group”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 72–85
Citation in format AMSBIB
\Bibitem{IvaZai19}
\by S.~O.~Ivanov, A.~A.~Zaikovskii
\paper Mod-$2$ (co)homology of an abelian group
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 72--85
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6859}
Linking options:
  • https://www.mathnet.ru/eng/znsl6859
  • https://www.mathnet.ru/eng/znsl/v484/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :54
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024