Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 484, Pages 59–71 (Mi znsl6856)  

Smooth affine model for the framed correspondences spectrum

A. E. Druzhininab

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The framed correspondences $T$-spectrum of a smooth affine scheme is a $T$-spectrum of Nisnevich sheaves. We construct the motivically equivalent model of the $T$-spectrum representable in the category of pairs of smooth affine ind-schemes in the case of a base scheme of a finite Krull dimension. In other words, the motivic spaces of $(\mathbb{P},\infty)^{\wedge \infty}$-loops in the relative motivic sphere $\mathbb{A}_Y^{\infty+l}/(\mathbb{A}_Y^{\infty+l}-0)$ are represented in the category of pairs of smooth affine ind-schemes. The construction in not functorial on the category of smooth affine schemes, but it is so on the category of smooth affine framed schemes, that is defined in the text.
Key words and phrases: loop spaces, smooth models, stably motivically fibrant spectra, framed correspondences.
Received: 25.11.2019
Document Type: Article
UDC: 514.762.34
Language: Russian
Citation: A. E. Druzhinin, “Smooth affine model for the framed correspondences spectrum”, Problems in the theory of representations of algebras and groups. Part 35, Zap. Nauchn. Sem. POMI, 484, POMI, St. Petersburg, 2019, 59–71
Citation in format AMSBIB
\Bibitem{Dru19}
\by A.~E.~Druzhinin
\paper Smooth affine model for the framed correspondences spectrum
\inbook Problems in the theory of representations of algebras and groups. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 484
\pages 59--71
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6856}
Linking options:
  • https://www.mathnet.ru/eng/znsl6856
  • https://www.mathnet.ru/eng/znsl/v484/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :30
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024