Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 203–219 (Mi znsl685)  

This article is cited in 1 scientific paper (total in 1 paper)

Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains

A. S. Makhalova, B. Nicolaenkobc, F. Golsebc

a Arizona State University
b Université Paris VII – Denis Diderot
c Laboratoire Jacques-Louis Lions, Université Pierre & Marie Curie
Full-text PDF (227 kB) Citations (1)
References:
Abstract: Non blow-up of the 3D ideal incompressible magnetohydrodynamics (MHD) equations is proven for a class of three-dimensional initial data characterized by both uniformly large vorticity and magnetic field in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast singular oscillating limits and nonlinear averaging methods in the context of almost periodic functions. We establish the global regularity of the 3D limit resonant MHD equations without any restriction on the size of 3D initial data. After establishing strong convergence to the limit resonant equations, we bootstrap this into the regularity on arbitrary large time intervals of the solutions of 3D MHD Equations with weakly aligned uniformly large vorticity and magnetic field at $t=0$.
Received: 20.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3768–3777
DOI: https://doi.org/10.1007/s10958-006-0198-3
Bibliographic databases:
UDC: 517
Language: English
Citation: A. S. Makhalov, B. Nicolaenko, F. Golse, “Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 203–219; J. Math. Sci. (N. Y.), 136:2 (2006), 3768–3777
Citation in format AMSBIB
\Bibitem{MakNicGol04}
\by A.~S.~Makhalov, B.~Nicolaenko, F.~Golse
\paper Non blow-up of the 3D ideal magnetohydrodynamics equations for a~class of three-dimensional initial data in cylindrical domains
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 203--219
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120799}
\zmath{https://zbmath.org/?q=an:1076.35101}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3768--3777
\crossref{https://doi.org/10.1007/s10958-006-0198-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl685
  • https://www.mathnet.ru/eng/znsl/v318/p203
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :80
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024