Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 482, Pages 120–128 (Mi znsl6829)  

Rationally verifiable necessary conditions for Hermitian congruence of complex matrices

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: A finite computational process using arithmetic operations only is called a rational algorithm. Matrices $A$ and $F$ are said to be Hermitian congruent if $F = Q^*AQ$ for a nonsingular matrix $Q$. The paper gives a survey of necessary conditions for Hermitian congruence verifiable by rational algorithms.
Key words and phrases: $*$-congruence, rational algorithm, canonical form w.r.t. congruences, cosquare, Toeplitz decomposition.
Received: 15.01.2019
Document Type: Article
UDC: 512.643.8
Language: Russian
Citation: Kh. D. Ikramov, “Rationally verifiable necessary conditions for Hermitian congruence of complex matrices”, Computational methods and algorithms. Part XXXII, Zap. Nauchn. Sem. POMI, 482, POMI, St. Petersburg, 2019, 120–128
Citation in format AMSBIB
\Bibitem{Ikr19}
\by Kh.~D.~Ikramov
\paper Rationally verifiable necessary conditions for Hermitian congruence of complex matrices
\inbook Computational methods and algorithms. Part~XXXII
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 482
\pages 120--128
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6829}
Linking options:
  • https://www.mathnet.ru/eng/znsl6829
  • https://www.mathnet.ru/eng/znsl/v482/p120
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :67
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024