Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 482, Pages 114–119 (Mi znsl6828)  

An attempt of spectral theory for the $*$-congruence transformations

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: The paper discusses the possibility of reducing a square complex matrix $A$ to a direct sum of smaller matrices by using $*$-congruence transformations. It turns out that this possibility is related to appropriate partitions of the spectrum of the cosquare of $A$. This makes it possible to associate the direct summands of the sum with subsets of the latter spectrum.
Key words and phrases: $*$-congruence, bilinear form, cosquare of a nonsingular matrix, invariant subspace.
Received: 14.01.2019
Document Type: Article
UDC: 512.643.8
MSC: 15A21, 15A63
Language: Russian
Citation: Kh. D. Ikramov, “An attempt of spectral theory for the $*$-congruence transformations”, Computational methods and algorithms. Part XXXII, Zap. Nauchn. Sem. POMI, 482, POMI, St. Petersburg, 2019, 114–119
Citation in format AMSBIB
\Bibitem{Ikr19}
\by Kh.~D.~Ikramov
\paper An attempt of spectral theory for the $*$-congruence transformations
\inbook Computational methods and algorithms. Part~XXXII
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 482
\pages 114--119
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6828}
Linking options:
  • https://www.mathnet.ru/eng/znsl6828
  • https://www.mathnet.ru/eng/znsl/v482/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :40
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024