Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 482, Pages 5–12 (Mi znsl6822)  

Similarity automorphisms of the space of Hankel matrices

A. K. Abdikalykova, Kh. D. Ikramovb

a Kazakhstan Branch of Lomonosov Moscow State University, Astana
b Lomonosov Moscow State University
References:
Abstract: The paper describes the nonsingular matrices $U$ such that for every Hankel matrix $A$ of the same order, $U^{-1}AU$ also is a Hankel matrix.
Key words and phrases: Hankel matrices, automorphisms, similarity transformations.
Received: 11.01.2019
Document Type: Article
UDC: 512.64
Language: Russian
Citation: A. K. Abdikalykov, Kh. D. Ikramov, “Similarity automorphisms of the space of Hankel matrices”, Computational methods and algorithms. Part XXXII, Zap. Nauchn. Sem. POMI, 482, POMI, St. Petersburg, 2019, 5–12
Citation in format AMSBIB
\Bibitem{AbdIkr19}
\by A.~K.~Abdikalykov, Kh.~D.~Ikramov
\paper Similarity automorphisms of the space of Hankel matrices
\inbook Computational methods and algorithms. Part~XXXII
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 482
\pages 5--12
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6822}
Linking options:
  • https://www.mathnet.ru/eng/znsl6822
  • https://www.mathnet.ru/eng/znsl/v482/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :47
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024