Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 481, Pages 5–11 (Mi znsl6784)  

Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube

G. A. Veprev

Saint Petersburg State University
References:
Abstract: In this paper, we solve the question, posed by A. M. Vershik, about the asymptotic behavior of the entropies of a given sequence of partitions of the infinite-dimensional cube satisfying the invariance and exhaustibility properties. On the one hand, it is proved that the entropy sequence increases faster than a linear function. On the other hand, we construct a series of examples that show that the estimate is sharp: for any given sequence increasing faster than a linear function, the entropy of a sequence of partitions can increase slower than the given sequence.
Key words and phrases: measurable partitions, entropy asymptotics, Weyl simplices.
Received: 30.08.2019
Document Type: Article
UDC: 519.722
Language: Russian
Citation: G. A. Veprev, “Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Zap. Nauchn. Sem. POMI, 481, POMI, St. Petersburg, 2019, 5–11
Citation in format AMSBIB
\Bibitem{Vep19}
\by G.~A.~Veprev
\paper Estimating the asymptotic behavior of the entropy of an invariant sequence of partitions of the infinite-dimensional cube
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 481
\pages 5--11
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6784}
Linking options:
  • https://www.mathnet.ru/eng/znsl6784
  • https://www.mathnet.ru/eng/znsl/v481/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :29
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024