Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 481, Pages 125–135 (Mi znsl6782)  

The absolute of the comb graph

P. P. Nikitinab

a St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: In the 1970s R. Stanley introduced the comb graph $\mathbb{E}$ whose vertices are indexed by the set of compositions of positive integers and branching reflects the ordering of compositions by inclusion. A. Vershik defined the absolute of a $\mathbb{Z}_+$-graded graph as the set of all ergodic probability central measures on it. We show that the absolute of $\mathbb{E}$ is naturally parametrized by the space $\Omega = \{(\alpha_1, \alpha_2, \dots ) : \alpha_i \ge 0$, $\sum_i \alpha_i \le 1\}$.
Key words and phrases: comb graph, compositions, Martin boundary, ergodic central measures, absolute.
Funding agency Grant number
Russian Science Foundation 17-71-20153
The work is supported by the RSF grant 17-71-20153.
Received: 15.09.2019
Document Type: Article
UDC: 519.217.72, 517.987
Language: English
Citation: P. P. Nikitin, “The absolute of the comb graph”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Zap. Nauchn. Sem. POMI, 481, POMI, St. Petersburg, 2019, 125–135
Citation in format AMSBIB
\Bibitem{Nik19}
\by P.~P.~Nikitin
\paper The absolute of the comb graph
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 481
\pages 125--135
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6782}
Linking options:
  • https://www.mathnet.ru/eng/znsl6782
  • https://www.mathnet.ru/eng/znsl/v481/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :51
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024