Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 480, Pages 73–85 (Mi znsl6774)  

An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel

I. V. Videnskii

St. Petersburg State University, Mathematics and Mechanics Faculty
References:
Abstract: In a functional Hilbert space $H$ on a set $X$ with reproducing kernel $k_x(y)$, define the distance between a point $a$, $a\in X$, and a subset $Z$, $Z\subset X$, as follows:
$$ d(a,Z)=\inf\left\{\Big\|\frac{k_a}{\|k_a\|}-h\Big\|\biggm | h\in \overline{\mathrm{span}}\big\{k_z | z\in Z\big\} \right\} . $$
A function $\psi_{a,Z}$ is called an extremal multiplier of $H$ if $\|\psi_{a,Z}\|\leq 1$, $\psi_{a,Z}(a)=d(a,Z)$, $\psi_{a,Z}(z)=0$, $z\in Z$. A space $H$ has the Schwarz–Pick kernel if for every pair $(a,Z)$ there exists an extremal multiplier. This definition generalizes the well-known concept of a Nevanlinna–Pick kernel.
For a space $H$ with Schwarz–Pick kernel, an inequality for the function $d(a,Z)$ is proved. This inequality generalizes the strong triangle inequality for the metric $d(a,b)$. For a sequence of subsets $\{Z_n\}_{n=1}^\infty$, $Z_n\subset X$, such that $\sum\limits_{n=1}^\infty\left(1-d^2(a,Z_n)\right)<\infty$, it is shown that an infinite product of extremal multipliers $\psi_{a,Z_n}$ converges uniformly and absolutely on any ball with radius strictly less than one in the metric $d$, and also converges in the strong operator topology of the multiplier space.
Key words and phrases: reproducing kernel, multiplier, strong triangle inequality.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150005_ÍÖÍÈ_à
Received: 05.08.2019
Document Type: Article
UDC: 517.5
Language: Russian
Citation: I. V. Videnskii, “An infinite product of extremal multipliers of a Hilbert space with Schwarz–Pick kernel”, Investigations on linear operators and function theory. Part 47, Zap. Nauchn. Sem. POMI, 480, ÏÎÌÈ, ÑÏá., 2019, 73–85
Citation in format AMSBIB
\Bibitem{Vid19}
\by I.~V.~Videnskii
\paper An infinite product of extremal multipliers of a Hilbert space with Schwarz--Pick kernel
\inbook Investigations on linear operators and function theory. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 480
\pages 73--85
\publ ÏÎÌÈ
\publaddr ÑÏá.
\mathnet{http://mi.mathnet.ru/znsl6774}
Linking options:
  • https://www.mathnet.ru/eng/znsl6774
  • https://www.mathnet.ru/eng/znsl/v480/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Çàïèñêè íàó÷íûõ ñåìèíàðîâ ÏÎÌÈ
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :44
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024