Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 480, Pages 170–190 (Mi znsl6770)  

This article is cited in 4 scientific papers (total in 4 papers)

Real interpolation of Hardy-type spaces: an announcement with some remarks

D. V. Rutsky

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (271 kB) Citations (4)
References:
Abstract: We consider the couples $(X_A, Y_A)$ of Hardy-type spaces defined for quasi-Banach lattices of measurable functions on $\mathbb T \times \Omega$. Under certain fairly general assumptions, the following conditions are shown to be equivalent: $(X_A, Y_A)$ is $K$-closed in $(X, Y)$, this couple is stable with respect to the real interpolation in the sense that $(X_A, Y_A)_{\theta, p} = (X_A + Y_A) \cap (X, Y)_{\theta, p}$, the inclusion $\left(X^{1 - \theta} Y^\theta\right)_A \subset \left(X_A, Y_A\right)_{\theta, \infty}$ holds true, and the lattices $\left(\mathrm{L}_1, \left(X^r\right)' Y^r\right)_{\delta, q}$ are $\mathrm{BMO}$-regular for some values of the parameters. The last property is weaker than the $\mathrm{BMO}$-regularity of $(X, Y)$, and it requires further study. Some new (compared to the main article) results are given concerning the characterization of this property in terms of the boundedness of the standard harmonic analysis operators such as the Hilbert transform and the Hardy-Littlewood maximal operator.
Key words and phrases: Hardy-type spaces, real interpolation, $K$-closedness, $\mathrm{BMO}$-regularity.
Funding agency Grant number
Russian Science Foundation 18-11-00053
Received: 03.09.2019
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Rutsky, “Real interpolation of Hardy-type spaces: an announcement with some remarks”, Investigations on linear operators and function theory. Part 47, Zap. Nauchn. Sem. POMI, 480, ПОМИ, СПб., 2019, 170–190
Citation in format AMSBIB
\Bibitem{Rut19}
\by D.~V.~Rutsky
\paper Real interpolation of Hardy-type spaces: an announcement with some remarks
\inbook Investigations on linear operators and function theory. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 480
\pages 170--190
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6770}
Linking options:
  • https://www.mathnet.ru/eng/znsl6770
  • https://www.mathnet.ru/eng/znsl/v480/p170
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :36
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024