Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 480, Pages 162–169 (Mi znsl6769)  

Operator sine-functions and trigonometric exponential pairs

V. A. Kostin, A. V. Kostin, D. V. Kostin

Voronezh State University
References:
Abstract: With the help of operator functional relations $Sh(t+s)+Sh(t-s) = 2[ I+2 Sh^2(\frac t2)] Sh(s), Sh(0)=0,$ we introduce and study strongly continuous sine-function $Sh(t), t\in(-\infty, \infty),$ of linear bounded transformations acting in a complex Banach space $E$, together with the cosine-function $Ch(t)$ given by the equation $Ch(t)=I+2Sh^2(\frac t2)$, where $I$ is the identity operator in $E$.
The pair $Ch(t)$, $ Sh(t)$ is the exponential of a trigonometric pair (ETP). For such pairs a generating operator (generator) is determined by the equation $Sh''(0)\varphi = Ch''(0) \varphi = A \varphi$, and a criterion for $A$ to be the generator of the ETP is provided.
A relationship of $Sh(t)$ with the uniform well-posedness of the Cauchy problem with the Krein condition for the equation $\frac{d^2 u(t)}{dt^2}=Au(t)$ is described. This problem is uniformly well-posed if and only if $A$ is an exponent generator of the sine-function $Sh(t)$.
The concept of bundles of several ETP, which also forms a ETP, is introduced, and a representation for its generator is given.
The obtained facts expand significantly the possibilities of operator methods in the study of well-posed initial boundary value problems.
Key words and phrases: orthogonal polynomials, operator polynomials, Bessel operator functions, strongly-continuous semigroup generator.
Received: 05.08.2019
Document Type: Article
UDC: 517.518.13; 517.983.5
Language: Russian
Citation: V. A. Kostin, A. V. Kostin, D. V. Kostin, “Operator sine-functions and trigonometric exponential pairs”, Investigations on linear operators and function theory. Part 47, Zap. Nauchn. Sem. POMI, 480, ПОМИ, СПб., 2019, 162–169
Citation in format AMSBIB
\Bibitem{KosKosKos19}
\by V.~A.~Kostin, A.~V.~Kostin, D.~V.~Kostin
\paper Operator sine-functions and trigonometric exponential pairs
\inbook Investigations on linear operators and function theory. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 480
\pages 162--169
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6769}
Linking options:
  • https://www.mathnet.ru/eng/znsl6769
  • https://www.mathnet.ru/eng/znsl/v480/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :42
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024