Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 480, Pages 148–161 (Mi znsl6768)  

This article is cited in 1 scientific paper (total in 1 paper)

Nearly invariant subspaces and rational interpolation

V. V. Kapustin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (195 kB) Citations (1)
References:
Abstract: Given an inner function $\theta$ in the upper half-plane, consider the subspace $H^2\ominus\theta H^2$ of the Hardy space $H^2$. For a finite collection $\Lambda$ of points on the complex plane, the subspace of functions from $K_\theta$ that vanish on $\Lambda$ can be represented in the form $g\cdot K_\omega$, where $\omega$ is an inner function and $g$ is an isometric multiplier on $K_\omega$. We obtain a description of the functions $\omega$ and $g$ in terms of $\theta$ and $\Lambda$.
Key words and phrases: Hardy class, model spaces, Schur algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00565_а
Received: 26.08.2019
Document Type: Article
UDC: 517.58
Language: Russian
Citation: V. V. Kapustin, “Nearly invariant subspaces and rational interpolation”, Investigations on linear operators and function theory. Part 47, Zap. Nauchn. Sem. POMI, 480, ПОМИ, СПб., 2019, 148–161
Citation in format AMSBIB
\Bibitem{Kap19}
\by V.~V.~Kapustin
\paper Nearly invariant subspaces and rational interpolation
\inbook Investigations on linear operators and function theory. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 480
\pages 148--161
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6768}
Linking options:
  • https://www.mathnet.ru/eng/znsl6768
  • https://www.mathnet.ru/eng/znsl/v480/p148
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :33
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024