Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 479, Pages 52–84 (Mi znsl6760)  

The best approximation of algebraic numbers by multidimensional continued fractions

V. G. Zhuravlev

Vladimir State University
References:
Abstract: A karyon-modular algorithm ($\mathcal {KM}$-algorithm) is proposed for decomposition of algebraic numbers $\alpha = (\alpha_1, \ldots, \alpha_d)$ from $\mathbb {R}^{d}$ to multidimensional continued fractions, that are a sequence of rational numbers
$$ \frac{P_{a}}{Q_{a}}=\Bigl( \frac{P^{a}_1}{Q^{a}},\ldots,\frac{P^{a}_d}{Q^{a}}\Bigr), a=1,2,3,\ldots, $$
from $\mathbb{Q}^d$ with numerators $P^{a}_1,\ldots,P^{a}_d \in \mathbb{Z}$ and the common denominator $Q^{a}=1,2,3,\ldots$ The $ \mathcal{KM}$-algorithm belongs to a class of tuning algorithms. It is based on the construction of localized Pisot units $\zeta>1$, for which the moduli of all conjugates $\zeta^{(i)}\ne \zeta $ are contained in the $ \theta $-neighbourhood of the number $ \zeta^{- 1 /d}$, where the parameter $ \theta> 0 $ can take an arbitrary fixed value. It is proved that if $ \alpha $ is a real algebraic point of degree $ \mathrm {deg} (\alpha) = d + 1 $, then  $ \mathcal {KM} $ - algorithm allows to obtain the following approximation
$$ \Bigl | \alpha - \frac {P_{a}}{Q_{a}} \Bigr | \leq \frac {c} {Q^{1+ \frac{1}{d} - \theta}_{a}} $$
for all $ a \geq a_{\alpha, \theta} $, where the constants $ a_{\alpha, \theta}> 0 $ and $ c = c_{\alpha, \theta}> 0 $ do not depend on $ a = 1,2,3, \ldots $ and the convergent fractions $ \frac {P_{a}} {Q_{a}} $ are calculated by means of some recurrence relation with constant coefficients determined by the choice of the localized units $ \zeta $.
Key words and phrases: multidimensional continued fractions, best approximations, localized Pisot units.
Received: 18.04.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. G. Zhuravlev, “The best approximation of algebraic numbers by multidimensional continued fractions”, Algebra and number theory. Part 2, Zap. Nauchn. Sem. POMI, 479, POMI, St. Petersburg, 2019, 52–84
Citation in format AMSBIB
\Bibitem{Zhu19}
\by V.~G.~Zhuravlev
\paper The best approximation of algebraic numbers by multidimensional continued fractions
\inbook Algebra and number theory. Part~2
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 479
\pages 52--84
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6760}
Linking options:
  • https://www.mathnet.ru/eng/znsl6760
  • https://www.mathnet.ru/eng/znsl/v479/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :32
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024