Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 479, Pages 23–51 (Mi znsl6759)  

Dual Diophantine systems of linear inequalities

V. G. Zhuravlev

Vladimir State University
References:
Abstract: A modified version of the $\mathcal{L}$-algorithm is proposed. Using this algorithm anyone can build an infinite sequence of integer solutions for dual systems of linear inequalities $\mathcal{S}$ and $\mathcal{S}^*$ of $d+1$ variables, consisting respectively of $k^{\perp}$ and $k^{* \perp} $ inequalities, where $k^{\perp} + k^{* \perp} = d + 1$. Solutions are obtained by using two recurrence relations of the order $d+1$. Approximations in the systems of inequalities $\mathcal{S}$ and $ \mathcal {S}^* $ is carried out with Diophantine exponents $ \frac {d + 1-k^{\perp}} { k^{\perp}} - \varrho $ and $\frac{d + 1-k ^{*\perp}} { k^{*\perp}} - \varrho $, where the deviation $ \varrho> 0 $ can be made arbitrarily small due to a suitable choice of the recurrence relations. The $ \mathcal{L}$-algorithm is based on a method of localizing units in algebraic number fields.
Key words and phrases: Diophantine approximations of linear forms, © best approximations, $\mathcal{L}$-algorithm.
Received: 18.04.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. G. Zhuravlev, “Dual Diophantine systems of linear inequalities”, Algebra and number theory. Part 2, Zap. Nauchn. Sem. POMI, 479, POMI, St. Petersburg, 2019, 23–51
Citation in format AMSBIB
\Bibitem{Zhu19}
\by V.~G.~Zhuravlev
\paper Dual Diophantine systems of linear inequalities
\inbook Algebra and number theory. Part~2
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 479
\pages 23--51
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6759}
Linking options:
  • https://www.mathnet.ru/eng/znsl6759
  • https://www.mathnet.ru/eng/znsl/v479/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024