Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 478, Pages 202–210 (Mi znsl6752)  

Homology of free nilpotent Lie rings

V. R. Romanovskiǐ

Laboratory of Modern Algebra and Applications, St. Petersburg State University
References:
Abstract: This paper presents the results of calculations of integer homology of free nilpotent Lie algebras $H_i(L(x_1,\dots,x_r)/\gamma_{N+1})$ in the system of computational algebra GAP. Our attention was focused on the occurrence of unexpected torsion in these homology, similar to the one that arises for $4$-generated free nilpotent groups of class $2$. The main result is that even for two generators torsion occurs in the fourth integer homology when the nilpotency class is $5$. Moreover, only a $7$-torsion occurs, and no others. Namely, there is an isomorphism $H_4(L(x_1,x_2)/\gamma_{6})\cong \mathbb Z^{85}\oplus \mathbb Z/7$.
Key words and phrases: homology, Chevalley–Eilenberg chain complex, free nilpotent Lie algebra, free nilpotent Lie ring.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.W03.31.0030
Received: 13.05.2019
Document Type: Article
UDC: 512.664.3, 512.664.4
Language: Russian
Citation: V. R. Romanovskiǐ, “Homology of free nilpotent Lie rings”, Problems in the theory of representations of algebras and groups. Part 34, Zap. Nauchn. Sem. POMI, 478, POMI, St. Petersburg, 2019, 202–210
Citation in format AMSBIB
\Bibitem{Rom19}
\by V.~R.~Romanovskiǐ
\paper Homology of free nilpotent Lie rings
\inbook Problems in the theory of representations of algebras and groups. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 478
\pages 202--210
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6752}
Linking options:
  • https://www.mathnet.ru/eng/znsl6752
  • https://www.mathnet.ru/eng/znsl/v478/p202
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025