Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 478, Pages 194–201 (Mi znsl6750)  

The reconstruction of Platonic solid from its rib

B. B. Lur'e

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We consider the problem of reconstruction of Platonic solid with integer coordinates of vertices when its edge (or the diagonal of the cube) is given. We find the necessary and sufficient conditions of existence of such polyhedrons as well as the algorithm of construction and the number of solutions.
Key words and phrases: Platonic solid, Euclidian rings.
Received: 01.05.2019
Document Type: Article
UDC: 511.5
Language: Russian
Citation: B. B. Lur'e, “The reconstruction of Platonic solid from its rib”, Problems in the theory of representations of algebras and groups. Part 34, Zap. Nauchn. Sem. POMI, 478, POMI, St. Petersburg, 2019, 194–201
Citation in format AMSBIB
\Bibitem{Lur19}
\by B.~B.~Lur'e
\paper The reconstruction of Platonic solid from its rib
\inbook Problems in the theory of representations of algebras and groups. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 478
\pages 194--201
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6750}
Linking options:
  • https://www.mathnet.ru/eng/znsl6750
  • https://www.mathnet.ru/eng/znsl/v478/p194
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025